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ABSTRACT
Biotic ligandmodels for calculation ofwatertype-specific no effect concentrations are recognized as amajor improvement in

risk assessment of metals in surface waters. Model complexity and data requirement, however, hamper the regulatory

implementation. To facilitate regulatory use, biotic ligand models (BLM) for the calculation of Ni, Cu, and Zn HC5 values were

simplified to linear equations with an acceptable level of accuracy, requiring a maximum of 3 measured water chemistry

parameters. In single-parameter models, dissolved organic carbon (DOC) is the only significant parameter with an accuracy of

72%–75% to predict HC5s computed by the full BLMs. In 2-parameter models, Mg, Ca, or pH are selected by stepwise multiple

regression for Ni, Cu, and Zn HC5, respectively, and increase the accuracy to 87%–94%. The accuracy is further increased by

addition of a third parameter to 88%–97%. Three-parameter models have DOC and pH in common, the third parameter is Mg,

Ca, orNa forHC5ofNi, Cu, and Zn, respectively.Mechanismsof chemical speciation and competitive binding to thebiotic ligand

explain the selection of these parameters. User-defined requirements, such as desired level of reliability and the availability of

measured data, determine the selection of functions to predict HC5. Integr Environ Assess Manag 2012;8:738–748.
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INTRODUCTION
Biotic ligand models (BLM) are risk assessment tools that

compute no-effect concentrations for metals accounting for
metal speciation and toxicity based on semimechanistic
processes. The biotic ligand is a biological receptor that is
used widely as the target site at which metals bind for uptake
by the organism. It is assumed that binding to the biotic ligand
has a proportional relationship with initial metal toxicological
effects. Competitive interactions between metals and macro-
ions (Ca, Na, Mg) for biotic ligand-binding and complexation
of metals to dissolved organic carbon (DOC), OH, SO4, and
HCO3 directly relate water composition to metal uptake.
Biotic ligand models for Ni, Cu, and Zn are well studied. Over
500 articles have been published in scientific literature since
2000, and their value for regulatory frameworks is increasingly
recognized (SCHER 2007, 2009a, 2009b; USEPA 2007).

Nevertheless, there are some major obstructions for a
widespread, practical use and implementation of BLM. First,
there is the conceptual complexity of the approach, requiring
advanced chemical speciation calculations and normalization
procedures with toxicity data. Second, BLM may require up
to 10 measured input parameters, some of which are not
readily available from standard monitoring programs. One
way to overcome these obstructions is simplification of input
parameters required for BLMmodeling by estimation of these
water chemistry input parameters from measured Ca

concentrations (Peters et al. 2011). This introduces an
uncertainty over several BLM input parameters that could
be magnified if these parameters are combined in BLM
calculations. Despite this uncertainty, Peters et al. (2011)
found good agreement with measured data. Another way of
model simplification is a metamodel. A metamodel is a look-
up table, filled with results of full-model computations of
many combinations of input parameters. This method was
elaborated for HC5s of Ni, Cu, and Zn, and presented as a
tool for regulatory use (Van Sprang et al. 2011).

Instead of input parameter estimation or meta models,
a simplification can also be obtained by replacement of the
BLM with 1 linear equation that contains only the most
sensitive parameters. In this study we intend to derive reliable
and empirical linear equations (also called transfer functions)
with a maximum of 3 of the most sensitive input parameters
to predict hazard concentrations to 5% of species in an
aquatic ecosystem (HC5) for Cu, Ni, and Zn. A number of 3
parameters is set as a maximum for practical and financial
reasons, to limit the chance of colinearity between input
parameters and to facilitate interpretation of the model.
These functions are based on a large toxicity data set and a
broad range of water chemistry data covering almost all water
types mentioned in the Water Framework Directive. More-
over, we will indicate which parameters are essential for
refined risk assessment and should be included in monitoring
programs, together with parameters that can be excluded
without losing significant reliability. Outcomes of these
transfer functions are compared to results from validated full
BLMs. As validity is proven, it may replace complicated
BLM procedures and increase the applicability for ‘‘routine’’
water-type specific risk assessment.
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METHODS

Water chemistry data

Monitoring data were collected from waterboard author-
ities, involving 209 052 water chemistry data over 2836 sites
in the Netherlands in 2007. Annual average concentrations
were computed for BLM parameters pH, DOC, Ca, Na, Mg,
Cl, SO4, and HCO3. Sites that lacked 1 or more parameters as
well as brackish surface waters (Cl�> 300mg/L) were
removed from the data set, leaving 243 complete data sets.
K (potassium) is required to maintain the charge balance in
speciation calculations but does not interfere with chemical
equilibria of potential ligands such as OH, SO4 and HCO3.
Neither is K a competitive binder in BLM. As a result, the
impact of the uncertainty in Kþ on calculated HC5s is
negligible. K is selected from monitoring data when available.
In case of missing K concentrations (n¼ 32), a default of
13.9mgK/L was used, which is the mean of other K-records
in the database. The annual mean temperature is set to 128C
in all water types.

The broadest applicability domain, described for Cu, Ni,
and Zn-BLM, was used for sample selection. The applicability
of BLM calculations is restricted to: pH¼ 5.5–8.8, hardness
(i.e., [CaþMg])¼ 10–500mg CaCO3/L, and alkalinity
([HCO3])¼ 0.01–453mg CaCO3/L. Some of the BLMs have
narrower boundaries of applicability caused by a narrower
range of experimental conditions. Two samples fell outside
these applicability domains and were removed from the data
set and excluded from analyses. Transfer functions were
derived with annual average concentrations of 241 complete
measured BLM parameter sets within the applicability
domain. The database was subjected to a quality check,
including an analysis of distributions (normality of data). The
range of water chemistry data is provided in Table 1. To judge
the representativity of our data for other regions, values for
major BLM parameters pH, DOC, Ca, Mg, and Na in other

European countries were also collected (ECI 2008). The
selected sites cover a large number of water types mentioned
under the Water Framework Directive (EU 2000): I, large
rivers 14%; II, canals and lakes 6%; III, streams and brooks
48%; IV, ditches 25%; V, sandy springs 7%; VI, small acid
ponds 0%.

Toxicity data

A toxicity database was composed containing chronic
toxicity test results (no observed effect concentration
[NOEC] and 10% effect concentration [EC10] values,
further denoted as NOEC) of Cu, Ni, and Zn, including the
corresponding water chemistry data of the test media. Only
toxicity data adopted in EU risk assessment reports were
included in the database (Denmark 2008; ECI 2008; the
Netherlands 2008). The database contained 136 chronic Cu
toxicity test results of 27 aquatic species, 132 chronic Zn
toxic test results of 19 species, and 126 chronic Ni test results
over 22 species. The species in the databases were tested
for various toxic endpoints, for example, reproduction,
mortality, and growth. The most sensitive endpoint was
used for the SSD and replicate toxicity data for the same
endpoint are averaged by calculation of the geometric mean,
according European guidelines (EC 2011). Fish, invertebrates,
algae, insects, mollusks, amphibians, rotifers, bivalves, and
plants were present in the database. An overview of species
and taxa in the toxicity database is given by Verschoor et al.
(2011).

Full biotic ligand modeling

The full BLM procedure requires 6 distinctive, sequential
steps:

� Calculation of free ion activities of test media, using
WHAM (or equal software);

Table 1. Major BLM parameters used for derivation of transfer functions (data of the Netherlands) compared with water chemistry data in
other European countries OKE (ECI 2008)

pH DOC Ca Mg Na

NL (this study) 5.7–8.7 1.5–33 10.7–175 1.94–42.7 7.15–153

Belgium 5.8–8.5 1.1–19.7 8.6–165 2.0–26.8 12–199

Germany 7.0–8.5 1.6–7.5 39–112 7.6–19.8 14–111

UK 5.9–8.5 0.5–18 0.5–182 0.1–63 0.1–546

Sweden 5.5–8.4 0.45–20.2 0.3–89.7 0.1–12.8 0.3–59.9

Spain 7.6–8.7 2.7–11.5 45–234 4.9–49.5 10.5–36.7

France 7.6–8.5 0.6–5.34 10.1–542 3.6–15.4 4.3–118

Austria 6.9–8.5 0.5–9.3 4.7–223 0.95–45.1 n.a.

Denmark 6.1–7.8 6.7–17.1 8.7–74.3 2.1–4.0 9.0–16.8

Finland 6.1–7.7 4.3–19.6 2.7–14.2 0.8–4.2 0.9–7.4

Ireland 5.6–8.0 6.1–16.9 2.8–157 0.9–10.8 3.7–134

Portugal 5.7–8.4 1.6–16.2 1.8–116 1.0–104 4.0–283

NL¼The Netherlands; BLM¼biotic ligand models; DOC¼dissolved organic carbon; n.a., not available. Concentration of Ca, Na and Mg in mg/L, DOC in mg C/L.
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� Calculation of intrinsic sensitivity of specific species¼
normalization of NOEC (BLM);

� Calculation of free ion activities of water sample, using
WHAM (or equal software);

� Extrapolation of normalized NOEC to water type specific
NOEC (BLM);

� Derivation of HC5 from a species sensitivity distribution
curve (SSD), composed of NOEC from the most sensitive
toxic endpoints;

� Transformation of HC5 to dissolved metal concentration,
using WHAM (or equal software).

A modeling framework was developed to compute water-
type specific chronic NOECs and HC5s for Cu, Ni, and Zn
BLM in statistical software package R (version 2.12.0).
Details were given by Verschoor et al. (2011). Chemical
speciation and the effect of competition of cations on biotic
binding sites was used to normalize and extrapolate the
measured NOEC in toxicity tests. BLM for algae, crustacean,
and fish were implemented. The biotic ligand binding
constants are summarized in Table 2. HC5 values were
derived from modeled cumulative frequency distributions of
log(NOEC) at a probability of 0.05. Chemical speciation in
surface water was computed WHAM VI (Tipping 1998) for
all metals simultaneously, treating DOC as an active fulvic
acid fraction of 50%. Databases for chemical equilibria were
updated according NIST database (NIST 2004). Binding
constants (logKMA) for Cu to fulvic acids was 2.1 (WHAM-
default), 1.8 for Zn (Cheng et al. 2005), and 1.75 for Ni
(Deleebeeck et al. 2007).

The distribution of taxa in the SSD was shown in a
previous study (Verschoor et al. 2011). It appeared that algae
are the most sensitive species for Zn, mollusks are the most

sensitive species for Ni and Cu. Because BLMs for mollusks
are not available, their NOECs are normalized using the
crustacean-BLM according to the principles of read-across
(ECI 2008). It is obvious that the most sensitive taxon
accompanied by its specific BLM will dominate NOECs in the
lower regions of the SSD. Regressions of HC5s with chemical
monitoring parameters will be explained in the light of the
dominant BLM.

Model simplification

The full BLM is a set of nonlinear equations involving
chemical speciation and biotic ligand binding reactions, using
8 key parameters: pH, DOC, Ca, Na, Mg, Cl, SO4, and
HCO3. The first step in model simplification is to transform
the set of nonlinear equations into 1 linear equation. Multiple
regression analyses were carried out to select the most
relevant monitoring parameters to include in transfer func-
tions for HC5. The general formula of multiple regression
models (also called transfer function) is:

HC5 ¼ aþ ðb� par1Þ þ ðc � par2Þ þ ðc � par3Þ þ . . .

þ ðI � par8Þ: ð1Þ

Parameters are subsequently removed (¼backwise analy-
ses) or included (¼stepwise analyses) from the model
equation, in order of significance (t value) to the independent
variable HC5, using the step function in R (R Foundation for
Statistical Computing 2011). Whether the model is signifi-
cantly improved by addition of a parameter is determined by
the Akaike information criterion (AIC) (Akaike 1981).

AIC ¼ P � k� 2� lnðLÞ; ð2Þ

Table 2. Overview biotic ligand binding constants used for normalization of NOECsa

BLM

Algae Crustacea Fish

Cub Nic Znd Cue Nif Zng Cuh Nii Znj

logK BL-Me 8.02 5.3 8.02 5.5

logK BL-MeOH 8.02 7.32

logK BL-MeCO3 7.44 7.01

logK BL-H 6.67 5.8 5.4 6.3

logK BL-Ca 3.53 3.2 3.47 3.6 3.6

logK BL-Mg 3.3 3.57 2.7 3.58 3.6 3.1

logK BL-Na 2.91 1.9 3.19 2.4

Slope �1.140 0.143 �0.754 0.1987 0.324

Intercept �0.812 �1.294

BLM¼biotic ligand models; Me¼metal; NOEC¼no observed effect concentration.
aIn some cases the NOECs are normalized with a nonlinear function containing pH as only variable and described by a slope and intercept.
bDe Schamphelaere et al. 2003.
cDeleebeeck et al. 2009.
dDe Schamphelaere et al. 2005.
eDe Schamphelaere and Janssen 2004a.
fDeleebeeck et al. 2008.
gHeijerick et al. 2005.
hDe Schamphelaere and Janssen 2002.
iDeleebeeck et al. 2007.
jDe Schamphelaere and Janssen 2004b.
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where P is a penalty factor for the number of parameters in the
model, k is the number of parameters in the statistical model,
and L is the maximized value of the likelihood function for the
estimated model. AIC accounts for goodness of fit, but
discourages overfitting, by penalizing the number of param-
eters included in the model. Default P is 2, however by
increasing p, parameter selection becomes more stringent. If
the stepwise procedure results in more than 3 significant
parameters, P was elevated to higher values to limit the
number of model parameters to 3, 2, or 1. The model with the
lowest AIC is the preferred one, from a statistical point of
view.

Comparison of models

The AIC, residual standard error, and adjusted r2 give an
indication of reduction of model performance when param-
eters are removed. The overlap and correlation between
statistically selected model parameters is taken as a basis for
further pragmatic model development. The method aims at
finding models that are able to calculate watertype-specific
HC5 with the same set of parameters, to optimize the use of
monitoring databases and minimize future monitoring efforts.
Moreover, the performance of DOCþpHþCa models was
tested, as they are intended to be included in the user-friendly
tool Bio-met (Van Sprang 2011). The performance of the
most abundant parameters in monitoring databases (pH, Cl,
and SO4) is also tested.

The performance of the simplified models to predict HC5
values was compared with full BLM calculations, using the
adjusted r2 and residual standard error (RSE) and AIC. All
statistics were computed by R2.12.0. Using the statistical
uncertainty of derivation of site-specific risk limits, the
probability of annual average concentrations exceeding the
risk limit was computed. Using the residual standard error,
95% prediction intervals are computed and samples are
assigned to 3 different risk classes:

� ‘‘No risk’’: probability that the measured concentration
exceeds the site-specific HC5 <0.025 (the lower boundary
of the 95% prediction interval);

� ‘‘Potential risk’’: probability that the measured concen-
tration exceeds the site-specific HC5 is between 0.025 and
0.975 (¼95% prediction interval); and

� ‘‘At risk’’: probability that the measured concentration
exceeds the site-specific HC5> 0.975 (the upper boundary
of the 95% prediction interval)

The risk class boundaries in this study are set according to
common statistical practice, in which 5% false predictions is
considered acceptable. However, the desired level of protec-
tion and consequently the risk class boundaries are ultimately
policy decisions, based on environmental as well as socio-
economical considerations.

RESULTS
The distribution of 241 water chemistry data and

calculated HC5 values is given in Figure 1. It shows that Cu
and Zn HC5 values are more sensitive to changes in water
chemistry than Ni, which is relatively insensitive, indicative
for a narrow frequency band. The median values and 90th
percentile interval for HC5s are 14 (8.2–31) mg Ni/L, 31
(6.5–80) mg Cu/L, and 22 (12–62) mg Zn/L.

Water characteristics may be positively or negatively
correlated (Table 3), and significant correlations occur for a
fair amount of BLM parameters. The BLM input parameters,
Na and Mg are both strongly correlated with Cl, whereas Ca
is correlated with HCO3. This implies that parameters can be
either substituted or neglected in the general equations, as
described in the method section. DOC is the only parameter
that correlates strongly with HC5s of Ni, Cu, and Zn.

Multiple regression analyses were applied to further
identify the relation between multiple independent parame-
ters (i.e., water characteristics). In Table 4, transfer functions
resulting from the stepwise statistical selection procedure are
listed. Models with 5–7 parameters are a good reflection of
full BLM. With explained variations of 97.0% (Ni-HC5),
89.5% (Cu-HC5), and 96.3% (Zn-HC5) the transformation
of nonlinear full BLM equations to 1 linear transfer function is
very good. Further simplification is justified because the
influence of some parameters could be replaced or compen-
sated by others. Moreover, for pragmatic reasons (limitation
of monitoring efforts and optimal use of existing monitoring
databases) we aim for a maximum of 3 parameters in the
transfer function.

Three-parameter models

Limiting the transfer function to 3 parameters leads to a
slight reduction of 0.4%–1.3% of the explained variation (see
Table 4). Adjusted r2 are 96.6% (Ni-HC5), 88.2% (Cu-HC5),
and 95.4% (Zn-HC5). BLM parameters that are highly
correlated no longer coexist in the transfer function. DOC
and pH are significant descriptive parameters in 3-parameter
transfer functions for all metals, the third parameter differs.
Mg is a significant descriptive parameter for Ni-HC5, Ca is
significant for Cu, and Na is significant for Zn. The predictive
capacity of the optimal 3-parameter models is presented in
Figure 2, showing excellent agreement between HC5s
computed with full BLM and HC5s computed with the
transfer functions (r2 0.882–0.966).

Striking is the minus-sign for the Ca effect on Cu-HC5,
implying that Ca concentrations lead to lower Cu HC5. This
Ca effect on Cu-HC5 is rather unexpected, because Ca is
generally considered as a risk mitigating agent. In its role
as competitive binder on the biotic ligand, increasing
Ca-concentrations would result in more protection of
organisms against metal exposure, and as a consequence in
higher HC5 values. To explain the effects of competitive
cations it is important to know which taxonomic groups are
the most sensitive, i.e., which BLM determine the HC5.

In Dutch waters, Cu-HC5 is mostly dictated by the
crustacean BLM. The Cu-BLM for crustacean describes a
competition between Cu-species and Na and H, but no
competition with Ca (see Table 2). A direct effect of Ca on
Cu-binding in crustacean is therefore not to be expected. The
reason for the rather unexpected Ca effect must be a shift on
chemical equilibria between Cu, Ca, and the ligands (L)
HCO3 and DOC. CuþL $ CuL and CaþL $ CaL. With
the presence of more Ca, equilibria shift toward CaL, at
the expense of CuL. As a result, Cu-species shift to Cu,
which has a higher affinity for biotic ligands than CuL. Ca
therefore increases the bioavailability of Cu, resulting in a
lower HC5.

Na was selected as the most significant third parameter for
Zn-HC5. This is in contrast to the mechanistic BLM model
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Figure 1. Frequency distributions of major monitoring parameters and normalized HC5 values of Cu, Ni, and Zn, computed with full BLM on 241 sites in

The Netherlands.

Table 3. Range of monitoring parameters and Pearson’s correlation with HC5 of Ni, Cu, and Zn

Range

Correlation

DOC pH Ca Mg Na Cl SO4 HCO3 Ni.HC5 Cu.HC5 Zn.HC5

DOC 1.55–33.0mgC/L �0.10 0.04 0.19 0.12 0.11 �0.09 0.08 0.85 0.86 0.86

pH 5.7–8.7 �0.10 0.59 0.45 0.45 0.50 0.03 0.60 0.29 �0.40 0.35

Ca 10.7–175mg/L 0.04 0.59 0.67 0.47 0.57 0.26 0.92 0.40 �0.34 0.39

Mg 1.94–42.7mg/L 0.19 0.45 0.67 0.71 0.82 0.52 0.61 0.61 �0.12 0.48

Na 7.15–153mg/L 0.12 0.45 0.47 0.71 0.92 0.41 0.55 0.43 �0.04 0.42

Cl 8.4–277mg/L 0.11 0.50 0.57 0.82 0.92 0.37 0.60 0.47 �0.10 0.42

SO4 17.6–226mg/L �0.09 0.03 0.26 0.52 0.41 0.37 0.09 0.14 �0.15 0.03

HCO3 6.9–499mg/L 0.08 0.60 0.92 0.61 0.55 0.60 0.09 0.42 �0.28 0.43

Ni.HC5 6.7–33.0mg/L 0.85 0.29 0.40 0.61 0.43 0.47 0.14 0.42 0.51 0.97

Cu.HC5 5.1–116mg/L 0.86 �0.40 �0.34 �0.12 �0.04 �0.10 �0.15 �0.28 0.51 0.56

Zn.HC5 8.0–81.7mg/L 0.86 0.35 0.39 0.48 0.42 0.42 0.03 0.43 0.97 0.56
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that indicates that Na is not the main competitor for binding
to the biotic ligand. Table 2 shows that Ca and Mg are also
defined as competitors for biotic ligand binding, with higher
affinities for the biotic ligand (logK respectively 3.2, 2.7
versus 1.9 for Na). The selection of Ca or Mg as the most
significant third parameter would have been more obvious. In
any case, the contribution of the third parameter to accuracy
of Zn-HC5 prediction is very small, as the adjusted r2 is
reduced by only 0.017 when the third parameter is eliminated
from the regression. This leads to the conclusion that DOC
and pH are the dominant parameters for Zn-HC5, which is
obvious as algae are the most dominant species in the lower
regions of the Zn-SSD.

As 3-parameter models have DOC and pH in common,
and only differ in the third parameter (Mg, Ca, or Na), we
investigated the possibility of harmonization of the third
parameter; i.e., we computed the loss of accuracy if either

Mg, Ca, or Na is used as the third parameter in the transfer
function. The fitted transfer functions are shown in Table 5.

The statistics of the fits indicate that a transfer function
with Ca or Na reduces the accuracy of the Ni-HC5 transfer
function with approximately 5%, compared with the
DOCþpHþMg model obtained by stepwise parameter
selection. For Cu-HC5, Na was eliminated from the transfer
function, as it was not a significant parameter. Replacement of
Ca by Mg in Cu-HC5 model resulted in a reduction of 3%
in explained variance. For Zn-HC5, models with Na are
statistically the best, but Mg or Ca seem to be almost equally
good.

Regressions of HC5 with the most abundant parameters in
monitoring databases (pH, Cl and SO4) resulted in unreliable
transfer functions, indicated by explained variances of 20%–
21% and AIC of 866, 1412, and 1107 for HC5 of Ni, Cu, and
Zn, respectively.

Table 4. Transfer functions with decreasing number of monitoring parameters selected by stepwise statistical procedurea

HC5 (mg/L) n Transfer function P RSE AIC Adj. r2

Ni 7 �DOCþpHþCaþMgþNaþ SO4þHCO3 2 1.2 77 0.970

3 �21.0þ0.86�DOCþ2.98�pHþ0.43�Mg 14 1.2 105 0.966

2 0.25þ0.81�DOCþ0.58�Mg 180 1.8 293 0.926

1 5.06þ0.90�DOC n.d. 3.4 592 0.743

Cu 6 �DOCþpHþCaþMgþClþHCO3 2 6.8 929 0.895

3 62.6þ2.74 �DOC – 6.38 �pH – 0.23 �Ca 22 7.2 953 0.882

2 18.8þ2.80 �DOC – 0.30 �Ca 31 7.6 982 0.867

1 1.05þ2.75 �DOC n.d. 11.0 1159 0.721

Zn 5 �DOCþpHþNaþ SO4þHCO3 2 2.1 368 0.963

3 �53.6þ1.51 �DOC�7.79 �pHþ0.06 �Na 48 2.4 419 0.954

2 �62.7þ1.55 �DOCþ9.28 �pH 64 2.8 493 0.937

1 7.30þ1.48 �DOC n.d. 5.5 825 0.750

AIC¼Aikaike information criterion; Adj. r2¼ explained variance; DOC¼dissolved organic carbon; N¼ number of monitoring parameters; n.d.¼ not decisive;

P¼penalty factor for model selection; RSE¼ residual standard error.

The default P¼ 2, was gradually increased to eliminate monitoring parameters. Single parameter model of Ni and Zn was selected based on highest t value in the

2-parameter model, because the stepwise procedure was not decisive.
aConcentrations of Ca, Mg and Na in mg/L, DOC in mg C/L.

Figure 2. Agreement between HC5 computed with full-BLM and HC5 computed with simplified 3-parameter transfer functions.
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Two-parameter models

Further limitation to 2 BLM parameters resulted in
selection of DOCþMg for Ni-HC5, DOCþCa for Cu-
HC5, and DOCþpH for Zn-HC5 (see Table 5). Elimination
of the third parameter reduced the explained variance with
another 1.4%–4.0%. At the same time the residual standard
error and AIC increased. To find out whether 1 DOCþpH
model for Ni, Cu, and Zn would suffice, additional multiple
regressions were done for Ni-HC5. The DOCþpH model for
Cu-HC5 was already shown in Table 5. The transfer func-
tion for Ni is Ni-HC5¼�32.4þ 0.94�DOCþ 4.97� pH,
RSE2¼ 0.2, AIC3¼ 92, and adjusted r2¼ 0.888.

Striking is the opposite direction of the pH effect on
normalized HC5 of Cu and Zn as shown by plus and minus-
signs of regression constants in the transfer functions. Cu-

HC5 is reduced by higher pH whereas Zn-HC5 is reduced by
lower pH. Theoretically, the pH can affect the normalized
HC5 in 2 different ways: 1) HC5 is reduced with
increasing pH, because at higher pH the competitive binding
of Hþ is reduced and the exposure of the biotic ligand to
metal-cations is higher, or 2) HC5 is reduced with
decreasing pH because at lower pH the chemical equilibria
shifts toward more free metal-cations, so the metal exposure
is higher, resulting in lower HC5.

It seems that pH-dependent chemical equilibria dominate
Zn-HC5, whereas the competitive effect of Hþ-ions at the
biotic ligand dominate Cu-HC5. The pH effect on chemical
Cu-species is not very relevant, because the toxic effect
of Cu2þ (dominant at pH< 7) and CuOHþ (dominant at
pH> 7) are similar, indicated by the same affinity for the
biotic ligand (logK¼8.02).

Table 5. Transfer functions with a pragmatic selection of 3 monitoring parametersa

HC5 (mg/L) Transfer function RSE AIC Adj. r2 Best fit

DOCþpHþCa models

Ni �23.2þ0.91 �DOCþ3.33 �pHþ0.05 �Ca 1.9 321 0.917

Cu 62.6þ2.74 �DOC�6.38 �pH�0.23 �Ca 7.2 953 0.882 b

Zn �52.2þ1.53 �DOCþ7.42 �pHþ0.06 �Ca 2.4 435 0.951

DOCþpHþNa models

Ni �25.7þ0.90 �DOCþ3.87 �pHþ0.05 �Na 2.0 332 0.913

Cu 102þ2.64 �DOC�13.4 �pH 8.7 1043 0.829

Zn �53.6þ1.51 �DOCþ7.79 �pHþ0.06 �Na 2.4 419 0.954 b

DOCþpHþMg models

Ni �21.0þ0.86 �DOCþ2.98 �pHþ0.43 �Mg 1.2 105 0.966 b

Cu 81.8þ2.78 �DOC�9.89 �pH�0.75 �Mg 8.0 1008 0.852

Zn �53.9þ1.49 �DOCþ7.76 �pHþ0.33 �Mg 2.4 421 0.953

AIC¼Aikaike information criterion; Adj. r2¼ explained variance; DOC¼dissolved organic carbon; N¼number of monitoring parameters, P¼penalty factor for

model selection, RSE¼ residual standard error.
aConcentrations of Ca, Mg and Na in mg/L, DOC in mg C/L.
bBest fit by stepwise parameter selection (taken from Table 1).

Figure 3. Effect of the 2most significant BLM input parameters on HC5. Ni model (adj r2¼ 0.923), Cumodel (adj r2¼ 0.829), and Znmodel (adj r2¼ 0.867). Lines

are iso-HC5 lines computed from the transfer functions; combinations of BLM parameters with similar HC5, the level of HC5 is indicated by values.
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The influence of DOC and the most significant second
parameter are shown in Figure 3. For each combination of
DOC and a second parameter, the HC5 can be read from the
graph. The iso-HC5 lines indicate combinations of DOC and
Mg (for Ni), pH for (for Cu and Zn), that give the same HC5.
Iso-HC5 lines are drawn at intervals of 10mg/L, values
between the iso-lines can be estimated by linear interpolation.
The graph however is only a visualization tool. Exact values
can be calculated easily with the transfer functions.

One parameter models

The major parameter explaining HC5 is definitely DOC,
indicated by the high correlation coefficients in Table 1. For
Cu, DOC is selected as the only significant parameter by
the stepwise procedure when the penalty factor for
parameter selection is set to very restrictive values (see
Table 4). For Ni and Zn the stepwise procedure could not
decide between the 2 last remaining parameters. In that case,
the parameter with the highest significance (highest t value)
was chosen for the single parameter model. Transfer functions
with only DOC resulted in a considerable reduction of
explained variance: 74%, 72%, and 75% for HC5 of Ni, Cu,
and Zn, respectively. Relations of DOC with HC5 are
visualized in Figure 4.

Model uncertainty

In the regulatory use of models, uncertainties are generally
not explicitly mentioned. Currently in Europe a discussion is
on going on how to set predicted no effect concentrations
(PNECs) for metals. In the REACH and the latest WFD
guidance, PNECs are set by dividing the HC5 by appropriate
assessment factors (AF) based on several considerations like
the uncertainty of the HC5. Assessment factors for SSD-
derived HC5s are set between 1 and 5 by expert judgment,
depending on diversity and representativeness of the selected
test species and taxonomic groups (i.e., with respect to
sensitive life stages, feeding strategies, and trophic levels), the
comparison of laboratory and field data, and the goodness of
fit of the SSD (EC 2011).

The Water Framework Directive however, recommends to
provide the probability that risk limits are exceeded (EU
2000). Our article indicates that this may be done based on

the uncertainty around the HC5. The probabilities are used to
classify sites in 3 risk categories: no risk, potential risk, and at
risk, according to the boundaries of the 95% prediction
interval. Table 6 shows that the majority of sites are in the
no-risk category. A fair number of sites are potentially at risk.
These sites need additional research or monitoring to assess
the risk. The number of sites at risk is lower following the
probabilistic approach, than the nonprobabilistic approach.
With respect to predicting number of sites at risk, the
nonprobabilistic approach of the full BLM is comparable with
the transfer functions, except for Cu. For Cu, the transfer
functions predict a higher number of sites at risk than the full-
BLM. This reflects the broader prediction interval of the
transfer function of Cu (see Figure 2 and Figure 4) in
combination with the relatively high number Cu-concen-
tration in close proximity of the predicted HC5. Incorporat-
ing the uncertainty in HC5 prediction is therefore highly
relevant and enables one to distinguish between sites that
need risk management or mitigation measures and sites that
need additional monitoring.

Transfer functions with less parameters or lower accuracy
lead to more sites with ‘‘potential risk.’’ Measuring additional
BLM parameters is rewarded by narrower prediction limits,
and more sites with a ‘‘no risk’’ or ‘‘at risk’’ classification. The
probabilistic approach supports a tiered approach of risk
assessment. The first tier of screening water quality on sites is
based on total dissolved metal concentrations. Simplified
BLMs could be used as a second tier, as it accounts for
bioavailability using fewers input parameters. Samples with
concentrations within the 95% prediction interval of the
simplified BLM could be subjected to an additional higher tier
assessment using full BLM, which reduces the uncertainty of
the estimated site-specific HC5. This implies including
additional monitoring parameters and advanced modeling
before decisions on costly risk mitigating measures should be
taken. In this way the tiered approach facilitates the
optimization of monitoring programs and risk assessment
complexity.

CONCLUSIONS
Linear models were derived from full BLM and provide

simple and reliable descriptions of HC5 based on a maximum
of 3 relevant monitoring parameters. With these simple

Figure 4. Relation between DOC and HC5 of Ni, Cu, and Zn. Lines fitted by single regression. HC5¼ aþb�BLM parameter. Straight line, most likely relation;

dashed line, 95% prediction interval.
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transfer functions, a major obstruction for implementation of
biotic ligand models is removed. In general, the accuracy of
the transfer functions increases when more parameters are
included. However, due to correlation between monitoring
parameters, including all 8 BLM parameters seems redundant.
Overfitting is prevented by using the stepwise statistical
procedure. As is shown in Table 4 and Table 5, different
combinations of monitoring parameters perform similar as
the full BLM. The selected parameter sets are all statistically
significant, considering the high penalty factors applied in the
stepwise selection procedure and low p values (<0.001)
applied in pragmatic parameter selection. Which transfer
functions should be used in practice depends on data
availability, monitoring budget, and desired reliability.

Most optimal 3-parameter models were Ni-HC5¼
f(DOC, pH, Mg), Cu-HC5¼ f(DOC, pH, Ca,), and Zn-
HC5¼ f(DOC, pH, Na). From a pragmatic point of view
aiming at optimization of monitoring effort, it would be
efficient if HC5 of Cu, Ni, and Zn could be described with the
same set of monitoring parameters. This is accomplished by
either choosing Ca, Mg, or Na as a third parameter (see
Table 5). Van Sprang et al. (2011) demonstrated the

performance of a model based on DOCþ pHþCa for
HC5 calculations of Cu, Ni, and Zn. Overall, the perform-
ance of DOCþpHþMg models is slightly better than
DOCþpHþCa, mainly due to a better prediction of
Ni-HC5.

Restricting the models to 2 parameters leads to DOCþMg
(for Ni) and DOCþCa (for Cu) and DOCþ pH (for Zn).
For pragmatic reasons DOCþ pH models were tested for Ni
and Cu as well. DOCþpH models are approximately 5% less
accurate than optimal 2-parameter transfer functions.

The presence of DOC in the transfer functions is beyond
doubt, as it is the major complexing agent for dissolved Cu,
Ni, and Zn. The presence of pH in transfer functions is also
clear, as it has a great impact on chemical equilibria as well as
on competitive binding at biotic ligands. Because Ca, Na, and
Mg concentrations are correlated, it is understandable that
they are able to predict HC5s even when they are considered
mechanistically not relevant (i.e., Ca and Na in the algae Ni-
BLM, and Ca and Mg in the crustacean Cu-BLM). This
implies that the predictive capacity of 1 competitor includes,
covers, or camouflages the predictive effect of the other
competitors.

Table 6. Number of sites in different risk categoriesa

Probabilistic transfer function At risk: nonprobabilistic

No risk Potential risk At risk Transfer function Full BLM

Ni 38

DOCþpHþCa 186 25 30 39

DOCþpHþNa 189 23 29 38

DOCþpHþMgb 194 14 33 38

DOCþMgb 185 28 28 39

DOCþpH 186 28 27 37

DOC 151 68 22 35

Cu 0

DOCþpHþCab 191 50 0 5

DOCþpHþMg 186 55 0 8

DOCþCab 193 48 0 7

DOCþpH 188 53 0 8

DOC 156 85 0 0

Zn 96

DOCþpHþCa 133 26 82 95

DOCþpHþNab 133 24 84 94

DOCþpHþMg 134 23 84 95

DOCþpHb 130 31 80 95

DOC 105 68 68 96

BLM¼biotic ligand models; DOC¼dissolved organic carbon.

Not at risk (metal concentration< lowest value of the prediction interval; at risk (metal concentration>highest value of the prediction interval); and potential risk

(metal concentration within the prediction interval).

Optimal 2- and 3-parameter models.
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The transfer functions are valid between the boundaries of
the tested data set, given in Table 2. The applicability range of
the transfer functions covers most but not all samples in
European fresh surface waters (Table 1). HC5 values outside
the applicability domain are not false by definition but should
be considered with care because they are less reliable.
However, full BLM models also have limitations. The
applicability range of water chemistry conditions is limited
by the ability of standard test species to survive and reproduce
under extreme conditions. Typically, low pH and high
alkalinity and hardness cannot be tolerated by standard
species.

From a scientific point of view, transfer functions with the
highest reliability and parameters that are linked to the
concepts of speciation and biotic ligand modeling are
preferred. The parameters DOC, pH, and Mg or Ca appear
to be the main descriptors and meet the requirements
of monitoring efficiency, conceptual justification, and
reliability best. The overall explained variance equals 92%,
which is a very slight reduction compared to transfer models
with 5–7 parameters. The overall explained variance of
DOCþpHþNa models is slightly less (r2¼ 0.89). It will
depend on data availability and required reliability which
model is most suitable.

Predictions go along with uncertainty, indicated by the
residual standard error. Dealing with explicit uncertainties in
a regulatory context is a challenge. In full-BLM validation
studies, typical uncertainty margins for NOEC are� 10mg/L,
approximating a residual standard error of 5 (De Schamphe-
laere et al. 2003, 2005; De Schamphelaere and Janssen 2004a;
Deleebeeck et al. 2009). Uncertainties of the transfer
functions are in the same order and comparable with the
uncertainties in full-BLM predictions. The relevance of the
uncertainties in HC5 for risk assessment becomes evident
when sites are assigned to risk categories. A fair amount of
sites are at potential risk, implying that the probability of
unjust risk qualification is relatively high. In these cases, we
recommend the full BLM, before a final risk characterization
is made.
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