Spatial and temporal variation of watertype-specific noeffect concentrations and risks of Cu, Ni and Zn Supplementary Information

Anja J. Verschoor ^{*1,2} , Jos P.	M. Vink ³ , Geert.	. R. de Snoo ¹ , Martina (G.Vijver ¹

Number of pages : 7
Cover sheet1
Table S1 Cu, Ni and Zn NOEC lowest mean endpoint over taxa and species (ug total dissolved metal/l) and NOEC-range between brackets
Table S2 Overview biotic ligand binding constants. Me = metal
Figure S1 Spatial variation of site-specific annual average HC5
Figure S2 Overview sites at risk for single metals and Cu, Ni and Zn mixture (SumRCR)
References

	Cu		Ni		Zn		
	Species name and number of data	NOEC (µg/l)	Species name and number of data	NOEC (µg/l)	Species name and number of data	NOEC (µg/l)	
algae	Chlamydomonas reinhardtii (4)	101 (22-178)	Ankistodesmus falcatus (2)	33.8 (24.6-43.0)	Chlorella sp.(5)	114 (5.9-350)	
	Chlorella vulgaris (17)	183 (31-510)	Chlamydomos sp (2)	17.9 (8.3-27.5)	Pseudokircheneriella subcapitata (30)	56.4 (4.0-358)	
	Pseudokirchneriella subcapitata (12)	43.1 (15.7-164)	Chlorella sp. (2)	73.6(49.0-98.2)			
			Coelastrum microporum (4)	36.9 (15.6-70.0)			
			Desmodesmus spinosus (4)	28.3 (3.5-43.7)			
			Pediastrum duplex (2)	31.5 (23.5-39.5)			
			Pseudokircheneriella subcapitata (12)	107 (21.5-432)			
			Pseudokirchneriella sp. (2)	8.7 (3.5-13.8)			
			Scenedesmus accumitus (2)	7.7(3.1-12.3)			
crustacea	Ceriodaphnia dubia (14)	15.6 (4.0-122)	Alona affinis (2)	25.0 (25-25)	Ceriodaphnia dubia (8)	40.6 (25-100)	
	Daphnia magna (9)	12.6 (12.6-181)	Ceriodaphnia dubia (10)	5.0 (2.8-15.3)	Daphnia longispina (2)	129 (91-209)	
	Daphnia pulex (9)	18.2 (4-40)	Ceriodaphnia pulchella (4)	19.1 (9.9-28.2)	Daphnia magna (39)	105 (25-491)	
	Gammarus pulex (1)	11.0	Ceriodaphnia quadrangula (8)	9.1 (2.0-34.9)	Hyalella azteca (1)	42.0	
	Hyalella azteca (6)	54.3 (30-82)	Daphnia longispina (4)	27.8 (26.6-118)			
			Daphnia magna (32)	128 (50.5-389)			
			Hyalella azteca (1)	29.0			
			Peracantha truncata (4)	14.2 (2.5-25.8)			
			Simocephalus vetulus (8)	14.1(9.2-28.9)			
fish	Catostomus commersoni (2)	12.9 (12.9-12.9)	Brachydanio rerio (1)	40.0	Cottus bairdi (2)	99.50 (27-172)	
	Esox lucius (2)	34.9 (34.9-34.9)	Oncorhynchus mykiss (5)	750 (265-1770)	Danio rerio (9)	1282 (180-2900	
	Ictalurus punctatus (2)	13.0 (13.0-13.0)			Jordanella floridae (2)	50.5 (26-75)	
	Noemacheilus barbatulus (1)	120			Oncorhynchus mykiss (23)	286 (32-974)	
	Oncorhynchus kisutch (5)	21.0 (18.0-28.0)			Phoxinus phoxinus (2)	50.0 (50.0-50.0)	
	Oncorhynchus mykiss (7)	18.7 (2.2-45)			Pimephales promelas (1)	78.0	
	Perca fluviatilis (2)	39.0 (39.0-188)			Salvelinus fontinalis (1)	534	
	Pimephales notatus (3)	57.9 (44.0-71.8)			Salmo trutta (2)	154 (57-250)	
	Pimephales promelas (12)	16.1 (4.8-6.06)					
	Salvelinus fontinalis (12)	14.0 (7.0-49.0)					

Table S1 Cu, Ni and Zn NOEC lowest mean endpoint over taxa and species (ug total dissolved metal/l) and NOEC-range between brackets.

Cu		Ni		Zn		
Species name and number of data	NOEC (µg/l)	Species name and number of data	NOEC (µg/l)	Species name and number of data	NOEC (µg/l)	
Brachionus calyciflorus(rotifer) (4)	47.5 (8.2-103)	Bufo terrestris (toad) (5)	640 (640-1360)	Anuraeopsis fissa (rotifer) (1)	50.0	
Campeloma decisum (mollusc) (2)	8.0 (8.0-8.0)	Gastrophryne carolensis(toad) (5)	80.0 (70.0-450)	Brachionus rubens (rotifer) (1)	50.0	
Chironomus riparius (insect) (1)	16.9	Hydra littoralis (hydrozoa) (1)	60.0	Dreissena polymorpha (mollusc) (1)	382	
Clistoronia magnifica (insect) (2)	10.7 (8.3-13.0)	Xenopus laevis(frog) (6)	88.2 (84.5-4790)	Ephoron virgo (insect) (1)	718	
Dreissenia polymorpha (bivalve) (2)	18.5 (16.0-21.0)			Potamopyrgus jenkinsi (mollusc) (1)	72	
Juga plicifera (mollusc) (1)	6.0					
Lemna minor L.(plant) (1)	30.0					
Paratanytarsus parthenogeneticus (insect) (2)	40.0					
Villosa iris (bivalve) (1)	19.1					
	Cu Species name and number of data Brachionus calyciflorus(rotifer) (4) Campeloma decisum (mollusc) (2) Chironomus riparius (insect) (1) Clistoronia magnifica (insect) (2) Dreissenia polymorpha (bivalve) (2) Juga plicifera (mollusc) (1) Lemna minor L.(plant) (1) Paratanytarsus parthenogeneticus (insect) (2) Villosa iris (bivalve) (1)	Cu Species name and number of data NOEC (μg/l) Brachionus calyciflorus(rotifer) (4) 47.5 (8.2-103) Campeloma decisum (mollusc) (2) 8.0 (8.0-8.0) Chironomus riparius (insect) (1) 16.9 Clistoronia magnifica (insect) (2) 10.7 (8.3-13.0) Dreissenia polymorpha (bivalve) (2) 18.5 (16.0-21.0) Juga plicifera (mollusc) (1) 6.0 Lemna minor L.(plant) (1) 30.0 Paratanytarsus parthenogeneticus (insect) (2) 40.0 Villosa iris (bivalve) (1) 19.1	CuNiSpecies name and number of dataNOEC (μg/l)Species name and number of dataBrachionus calyciflorus(rotifer) (4)47.5 (8.2-103)Bufo terrestris (toad) (5)Campeloma decisum (mollusc) (2)8.0 (8.0-8.0)Gastrophryne carolensis(toad) (5)Chironomus riparius (insect) (1)16.9Hydra littoralis (hydrozoa) (1)Clistoronia magnifica (insect) (2)10.7 (8.3-13.0)Xenopus laevis(frog) (6)Dreissenia polymorpha (bivalve) (2)18.5 (16.0-21.0)Juga plicifera (mollusc) (1)Juga plicifera (mollusc) (1)6.0Paratanytarsus parthenogeneticus (insect) (2)Villosa iris (bivalve) (1)19.1	Cu Ni Species name and number of data NOEC (μg/l) Species name and number of data NOEC (μg/l) Brachionus calyciflorus(rotifer) (4) 47.5 (8.2-103) Bufo terrestris (toad) (5) 640 (640-1360) Campeloma decisum (mollusc) (2) 8.0 (8.0-8.0) Gastrophryne carolensis(toad) (5) 80.0 (70.0-450) Chironomus riparius (insect) (1) 16.9 Hydra littoralis (hydrozoa) (1) 60.0 Clistoronia magnifica (insect) (2) 10.7 (8.3-13.0) Xenopus laevis(frog) (6) 88.2 (84.5-4790) Dreissenia polymorpha (bivalve) (2) 18.5 (16.0-21.0) 50.0 50.0 Juga plicifera (mollusc) (1) 6.0 50.0 50.0 Lemna minor L.(plant) (1) 30.0 50.0 50.0 Paratanytarsus parthenogeneticus (insect) (2) 40.0 50.0 50.0 Villosa iris (bivalve) (1) 19.1 50.0 50.0 50.0	CuNiZnSpecies name and number of dataNOEC (µg/l)Species name and number of dataNOEC (µg/l)Species name and number of dataBrachionus calyciflorus(rotifer) (4)47.5 (8.2-103)Bufo terrestris (toad) (5)640 (640-1360)Anuraeopsis fissa (rotifer) (1)Campeloma decisum (mollusc) (2)8.0 (8.0-8.0)Gastrophryne carolensis(toad) (5)80.0 (70.0-450)Brachionus rubens (rotifer) (1)Chironomus riparius (insect) (1)16.9Hydra littoralis (hydrozoa) (1)60.0Dreissena polymorpha (mollusc) (1)Clistoronia magnifica (insect) (2)10.7 (8.3-13.0)Xenopus laevis(frog) (6)88.2 (84.5-4790)Ephoron virgo (insect) (1)Juga plicifera (mollusc) (1)6.0	

.Between brackets: number of data. NOECs are lowest endpoint means per species. Summarized from [1-3]

BLM	Algae		Crustacea			Fish			
	Cu	Ni[4]	Zn	Cu[5]	Ni[4]	Zn[6]	Cu[7]	Ni[4]	Zn[8]
logK BL-Me		4.0		8.02	4.0	5.3	8.02	4.0	5.5
logK BL-MeOH		-		8.02	-	-	7.32	-	-
logK BL-MeCO3				7.44	-	-	7.01	-	-
logK BL-H	n.a.	5.9	n.a.	6.67	5.9	5.8	5.4	6.8	6.3
logK BL-Ca	2.1 3.3			-	3.1	3.2	3.47	3.7	3.6
logK BL-Mg			-	3.3	2.7	3.58	4.0	3.1	
logK BL-Na		-		2.91	-	1.9	3.19	-	2.4
Regression	Cu[9]	Ni	Zn[10]	Cu	Ni	Zn	Cu	Ni	Zn
Slope	-1.140	n.r.	-0.754			n r	nr	nr	n r
Intercept	-0.812		n.r.	-1.294	11.1.			n.r.	

Table S2 Overview biotic ligand binding constants. Me = metal

n.a.= not available

n.r. = not relevant since a full BLM is available

Stability constants fit in general BLM equations (see paper, methods section)

Regressions are used if BLM are not available in the following general formulae:

Intrinsic Sensitivity= NOEC / (10 Slope* pH. Test+Intercept)

Environmental Moderator <- 10 Slope* pH.sample+ Intercept

NOEC_{sample}=IntrinsicSensitivity × EnvironmentalModerator

Figure S1 Spatial variation of site-specific annual average HC5.

Figure S2 Overview sites at risk for single metals and Cu, Ni and Zn mixture (SumRCR). A site is considered to be at risk when RCR>1.

References

- (1) Voluntary European Union Risk Assessment Report. Copper, CopperII sulphate pentahydrate, Copper(I)oxide, Copper(II)oxide, Dicopper chloride trihydroxide; European Copper Institute: 2008; http://echa.europa.eu/chem_data/transit_measures/vrar_en.asp.
- (2) European Union Risk Assessment Reports, Nickel and nickel compounds, Final version; European Communities: 2008; http://tcsweb3.jrc.it/DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/REPORT/nickelreport311.pdf.
- (3) Van Sprang, P. A.; Verdonck, F. A. M.; Van Assche, F.; Regoli, L.; De Schamphelaere, K. A. C. Environmental risk assessment of zinc in European freshwaters: A critical appraisal, *Sci. Total Environ.* 2009, 407 (20), 5373-5391.
- (4) Development and validation of biotic ligand models for predicting nickel toxicity to fish, daphnids and algae. Draft final report; Laboratory for Environmental Toxicology and Aquatic Ecology, Ghent University: Ghent, Belgium, 2005.
- (5) De Schamphelaere, K. A. C.; Janssen, C. R. Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia Magna, *Environ. Toxicol. Chem.* 2004, 23 (6), 1365-1375.
- (6) Heijerick, D. G.; De Schamphelaere, K. A. C.; Van Sprang, P. A.; Janssen, C. R. Development of a chronic zinc biotic ligand model for Daphnia magna, *Ecotoxicol. Env. Saf.* **2005**, *62* (1), 1-10.
- (7) De Schamphelaere, K. A. C.; Janssen, C. R. A Biotic Ligand Model Predicting Acute Copper Toxicity for Daphnia magna; The Effects of Calcium, Magnesium, Sodium, Potassium, and pH, *Environ. Sci. Technol.* 2002, *36* (1), 48-54.
- (8) De Schamphelaere, K. A. C.; Janssen, C. R. Bioavailability and Chronic Toxicity of Zinc to Juvenile Rainbow Trout (*Oncorhynchus mykiss*): Comparison with Other Fish Species and Development of a Biotic Ligand Model, *Environ. Sci. Technol.* 2004, *38* (23), 6201-6209.
- (9) De Schamphelaere, K. A. C.; Vasconcelos, F. M.; Heijerick, D. G.; Tack, F. M.; Delbeke, K.; Allen, H. E.; Janssen, C. R. Development and field validation op a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata, *Environ.Toxicol. Chem.* **2003**, *22*, 2454-2465.
- (10) De Schamphelaere, K. A. C.; Lofts, S.; Janssen, C. R. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface water, *Environ. Toxicol. Chem.* **2005**, *24* (5), 1190-1197.